Local Density Based Distributed Clustering Algorithm

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed Clustering Based on Sampling Local Density Estimates

Huge amounts of data are stored in autonomous, geographically distributed sources. The discovery of previously unknown, implicit and valuable knowledge is a key aspect of the exploitation of such sources. In recent years several approaches to knowledge discovery and data mining, and in particular to clustering, have been developed, but only a few of them are designed for distributed data source...

متن کامل

Scalable Density-Based Distributed Clustering

Clustering has become an increasingly important task in analysing huge amounts of data. Traditional applications require that all data has to be located at the site where it is scrutinized. Nowadays, large amounts of heterogeneous, complex data reside on different, independently working computers which are connected to each other via local or wide area networks. In this paper, we propose a scal...

متن کامل

DBDC: Density Based Distributed Clustering

Clustering has become an increasingly important task in modern application domains such as marketing and purchasing assistance, multimedia, molecular biology as well as many others. In most of these areas, the data are originally collected at different sites. In order to extract information from these data, they are merged at a central site and then clustered. In this paper, we propose a differ...

متن کامل

Improvement of density-based clustering algorithm using modifying the density definitions and input parameter

Clustering is one of the main tasks in data mining, which means grouping similar samples. In general, there is a wide variety of clustering algorithms. One of these categories is density-based clustering. Various algorithms have been proposed for this method; one of the most widely used algorithms called DBSCAN. DBSCAN can identify clusters of different shapes in the dataset and automatically i...

متن کامل

Entropy-based Consensus for Distributed Data Clustering

The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Software

سال: 2008

ISSN: 1000-9825

DOI: 10.3724/sp.j.1001.2008.02339